Package: DSSAT (via r-universe)

September 16, 2024

Type Package

Title A Comprehensive R Interface for the DSSAT Cropping Systems Model

Version 0.0.9

Date 2024-01-19

Author Phillip D. Alderman [aut, cre]

Maintainer Phillip D. Alderman <phillip.alderman@okstate.edu>

Description The purpose of this package is to provide a comprehensive R interface to the Decision Support System for Agrotechnology Transfer Cropping Systems Model (DSSAT-CSM; see https://dssat.net for more information). The package provides cross-platform functions to read and write input files, run DSSAT-CSM, and read output files.

License GPL (>=3)

Encoding UTF-8

LazyData true

Imports dplyr (>= 1.0.0), glue, lubridate, magrittr, methods, purrr, readr, rlang, stringr, tibble, tidyr, tidyselect, utils

RoxygenNote 7.2.3

Suggests knitr, rmarkdown

BugReports https://github.com/palderman/DSSAT/issues

Config/testthat/edition 3

Repository https://palderman.r-universe.dev

RemoteUrl https://github.com/palderman/dssat

RemoteRef HEAD

RemoteSha c0a6d3ecc1598e1727d79c59cca37b4f579e1c5b

2 add_v_fmt

Contents

Index		27
	write_wth	25
	write_tier	24
	write_sol	23
	write_filex	23
	write_filet	22
	write_filea	21
	write_eco	21
	write_dssbatch	20
	write_cul	19
	run_dssat	18
	read_wth	17
	read_tier	16
	read_sol	15
	read_soil_profile	14
	read_pest	13
	read_output	12
	read_filex_multiple	12
	read_filex	11
	read_filet	10
	read filea	9
	read eco	8
	read_dssbatch	8
	read_dssat	7
	read_cul	6
	mutate cond	5
	clear output	5
	calc_TAV	4
	calc AMP	<i>3</i>
	as DSSAT tbl	3

add_v_fmt

Adds variable format information to a tibble

Description

Adds variable format information to a tibble

```
add_v_fmt(input_tbl, v_fmt = NULL)
```

as_DSSAT_tbl 3

Arguments

input_tbl a tibble

v_fmt a named vector containing variable format information to be added to 'input_tbl'

Value

a tibble containing the original tibble with an additional attribute that contains variable format in-

Examples

```
# Extract file path for sample ecotype file
sample_eco_file <- system.file('extdata','SAMPLE.ECO',package='DSSAT')
# Read sample ecotype file
eco <- read_eco(sample_eco_file)
# Replace formats for TSEN and CDAY parameters
eco <- add_v_fmt(eco,v_fmt=c(TSEN='%6.1f',CDAY='%6.1f'))</pre>
```

as_DSSAT_tbl

Convert tibble to DSSAT_tbl

Description

Convert tibble to DSSAT_tbl

Usage

```
as_DSSAT_tbl(tbl_in, v_fmt = NULL, tier_info = NULL)
```

Arguments

tbl_in a tibble

 v_{-} fmt a character vector specifying the sprintf() format for each column

tier_info a list of character vectors storing the history of which original table that columns

came from for tibbles that are comprised of multiple joined tables

Value

```
a tibble of class DSSAT_tbl
```

4 calc_TAV

calc_AMP

Calculate long-term temperature amplitude (AMP)

Description

Calculate long-term temperature amplitude (AMP)

Usage

```
calc_AMP(wth)
```

Arguments

wth

a data frame that contains weather data formatted as would be generated using read_wth, namely including columns DATE, TMAX and TMIN.

calc_TAV

Calculate long-term temperature average (TAV)

Description

Calculate long-term temperature average (TAV)

Usage

```
calc_TAV(wth)
```

Arguments

wth

a data frame that contains weather data formatted as would be generated using read_wth, namely including columns TMAX and TMIN.

clear_output 5

clear_output	Clear output files
--------------	--------------------

Description

A function to delete DSSAT output files (*.OUT) and intermediate files (*.INH, *.INP and *.LST) from a directory

Usage

```
clear_output(dir_name = getwd(), file_ext = c("OUT", "LST", "INP", "INH"))
```

Arguments

dir_name a length-one character vector indicating the directory in which to delete output

files (by default the current working directory)

file_ext a character vector of file extensions to delete

mutate_cond	Convenience function that allows mutating a subset of rows

Description

Convenience function that allows mutating a subset of rows

Usage

```
mutate_cond(.data, condition, ..., envir = parent.frame())
```

Arguments

```
.data a tibble
```

condition a logical vector for subsetting rows of '.data'

... Name-value pairs of expressions to be evaluated by 'mutate()' envir environment within which expressions should be evaluated

Details

Original code taken from https://stackoverflow.com/questions/34096162/dplyr-mutate-replace-several-column

Value

a tibble with specified rows modified

6 read_cul

read_cul	Reads parameters from a single DSSAT cultivar parameter file (*.CUL)

Description

Reads parameters from a single DSSAT cultivar parameter file (*.CUL)

Usage

```
read_cul(
  file_name,
  col_types = NULL,
  col_names = NULL,
  left_justified = c("VAR#", "VARNAME\\.*", "VAR-NAME\\.*", "VRNAME\\.*"),
  use_std_fmt = TRUE
)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $\texttt{read_fwf}$ or $\texttt{vignette}(\texttt{"readr"})$ for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
$left_justified$	A character vector of column names that should be left justified
use_std_fmt	logical value indicating whether to read FileX using the standard column formats. If FALSE, column formats will be inferred from tier headers

Value

a tibble containing the data from the raw DSSAT output

```
# Extract file path for sample cultivar file path
sample_cul_file <- system.file('extdata','SAMPLE.CUL',package='DSSAT')
# Read sample cultivar file
cul <- read_cul(sample_cul_file)</pre>
```

read_dssat 7

read	_dssat

Reads data from a single DSSAT file

Description

Reads data from a single DSSAT file

Usage

```
read_dssat(
   file_name,
   col_types = NULL,
   col_names = NULL,
   na_strings = NULL,
   left_justified = "EXCODE",
   guess_max = 10
)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $read_fwf$ or $vignette("readr")$ for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
na_strings	A character vector containing strings that should be interpreted as missing values
left_justified	A character vector of column names that should be left justified
guess_max	An integer indicating the maximum number of lines that should be used to guess the type of a column

Value

a tibble containing the data from the raw DSSAT output

```
# Extract file path for sample output file path
sample_output <- system.file('extdata','SAMPLE.OUT',package='DSSAT')
read_dssat(sample_output)</pre>
```

8 read_eco

read_dssbatch

Reads data from a single DSSAT batch file

Description

Reads data from a single DSSAT batch file

Usage

```
read_dssbatch(file_name = "DSSBatch.V47")
```

Arguments

file_name

a character vector of length one that contains the name of a single DSSAT batch

Value

a tibble containing the data from the DSSAT batch file

Examples

```
# Create example batch file path
batch_file_path <- paste0(tempdir(),'/DSSBatch.V47')

# Write example batch file
write_dssbatch(x='UFGA0601.BMX',trtno=1:4,file_name = batch_file_path)

# Read example batch file
dssbatch <- read_dssbatch(batch_file_path)</pre>
```

read_eco

Reads parameters from a single DSSAT ecotype parameter file (*.ECO)

Description

Reads parameters from a single DSSAT ecotype parameter file (*.ECO)

```
read_eco(
   file_name,
   col_types = NULL,
   col_names = NULL,
   left_justified = c("ECO ", "ECO#", "ECONAME\\.*", "ECO-NAME\\.*")
)
```

read_filea 9

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $read_fwf$ or $vignette("readr")$ for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
left_justified	A character vector of column names that should be left justified

Value

a tibble containing the data from the raw DSSAT file

Examples

```
# Extract file path for sample ecotype file path
sample_eco <- system.file('extdata','SAMPLE.ECO',package='DSSAT')
eco <- read_eco(sample_eco)</pre>
```

read_filea	Reads data from a single DSSAT file A

Description

Reads data from a single DSSAT file A

Usage

```
read_filea(file_name, col_types = NULL, col_names = NULL, na_strings = NULL)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See read_fwf or vignette("readr") for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
na_strings	a character vector of string to represent missing values

Value

a tibble containing the data from the raw DSSAT file

10 read_filet

Examples

```
# Extract FileA path for sample file
sample_filea <- system.file('extdata','SAMPLE.CRA',package='DSSAT')
filea <- read_filea(sample_filea)</pre>
```

read_filet

Reads time series data from a single DSSAT file T

Description

Reads time series data from a single DSSAT file T

Usage

```
read_filet(file_name, col_types = NULL, col_names = NULL, na_strings = NULL)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See read_fwf or vignette("readr") for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
na_strings	a character vector of string to represent missing values

Value

a tibble containing the data from the raw DSSAT file

```
# Extract FileT path for sample file
sample_filet <- system.file('extdata','SAMPLE.CRT',package='DSSAT')
read_filet(sample_filet)</pre>
```

read_filex 11

read_filex	Reads input data from a single DSSAT experiment file (*.*X)

Description

Reads input data from a single DSSAT experiment file (*.*X)

Usage

```
read_filex(
  file_name,
  col_types = NULL,
  col_names = NULL,
  na_strings = NULL,
  store_v_fmt = FALSE,
  use_std_fmt = FALSE
)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $\mbox{read_fwf}$ or vignette("readr") for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
na_strings	A character vector containing strings that should be interpreted as missing values
store_v_fmt	a logical value indicating whether or not to store the format for variables being read
use_std_fmt	logical value indicating whether to read FileX using the standard column formats. If FALSE, column formats will be inferred from tier headers

Value

a tibble containing the data from the raw DSSAT file

read_output

```
{\sf read\_filex\_multiple} Read multiple File X
```

Description

Read multiple File X

Usage

```
read_filex_multiple(
  file_name,
  col_types = NULL,
  col_names = NULL,
  na_strings = NULL,
  store_v_fmt = FALSE,
  use_std_fmt = TRUE
)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $read_fwf$ or $vignette("readr")$ for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
na_strings	A character vector containing strings that should be interpreted as missing values
store_v_fmt	a logical value indicating whether or not to store the format for variables being read
use_std_fmt	logical value indicating whether to read FileX using the standard column formats. If FALSE, column formats will be inferred from tier headers

read_output	Reads data from a single DSSAT output file	
-------------	--	--

Description

Reads data from a single DSSAT output file

read_pest 13

Usage

```
read_output(
  file_name,
  col_types = NULL,
  col_names = NULL,
  left_justified = NULL,
  read_only = NULL,
  store_v_fmt = FALSE
)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $read_fwf$ or $vignette("readr")$ for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
<pre>left_justified</pre>	A character vector of column names that should be left justified
read_only	NULL or a character vector of column names that should be read in; If non-NULL only the columns listed will be read in.
store_v_fmt	a logical value indicating whether or not to store the format for variables being read

Value

a tibble containing the data from the raw DSSAT output

Examples

```
# Extract file path for sample output file path
sample_output <- system.file('extdata','SAMPLE.OUT',package='DSSAT')
out <- read_output(sample_output)</pre>
```

read_pest

Reads input data from a single DSSAT pest file (*.PST)

Description

Reads input data from a single DSSAT pest file (*.PST)

```
read_pest(file_name, col_types = NULL, col_names = NULL)
```

read_soil_profile

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See read_fwf or vignette("readr") for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line

Value

a tibble containing the data from the raw DSSAT file

read_soil_profile	Reads a single DSSAT formatted soil profile from a raw character vector
	tor

Description

Reads a single DSSAT formatted soil profile from a raw character vector

Usage

```
read_soil_profile(
  raw_lines,
  left_justified = NULL,
  col_types = NULL,
  col_names = NULL
)
```

Arguments

raw_lines	a character vector that includes the contents of a single tier of data (including headline, but excluding version stamp and other header information) from a DSSAT output file
$left_justified$	A character vector of column names that should be left justified
col_types	One of NULL, a cols() specification, or a string. See $\mbox{read_fwf}$ or vignette("readr") for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line

Value

a list containing tibbles for each tier of a DSSAT formatted soil profile

read_sol 15

Examples

```
sample_sol <- c(</pre>
"*IB00000001 IBSNAT
                         SIC
                                 210 DEFAULT - DEEP SILTY CLAY",
"@SITE
             COUNTRY
                             LAT
                                     LONG SCS FAMILY",
" Generic
                              -99
             Generic
                                      -99 Generic".
"@ SCOM
        SALB SLU1 SLDR SLRO SLNF SLPF SMHB SMPX SMKE",
                          85.0 1.00 1.00 IB001 IB001 IB001",
        0.11
               6.0 0.30
                                                              SLCF SLNI SLHW
                                                                               SLHB",
   SLB SLMH SLLL SDUL SSAT SRGF SSKS SBDM SLOC SLCL SLSI
        -99 0.228 0.385 0.481 1.000
                                   -99
                                        1.30
                                              1.75
                                                   50.0
                                                         45.0
                                                               0.0 0.170
                                                                          6.5
                                                                                -99"
    15
        -99 0.228 0.385 0.481 1.000
                                    -99 1.30
                                              1.75
                                                    50.0
                                                         45.0
                                                               0.0 0.170
                                                                          6.5
                                                                                -99"
        -99 0.249 0.406 0.482 0.638
                                   -99 1.30
                                              1.60
                                                    50.0
                                                         45.0
                                                               0.0 0.170
                                                                          6.5
                                                                                -99"
        -99 0.249 0.406 0.465 0.472
                                   -99 1.35 1.45
                                                         45.0
                                                    50.0
                                                               0.0 0.140
                                                                          6.5
                                                                                -99"
        -99 0.249 0.406 0.465 0.350 -99 1.35 1.45 50.0 45.0
                                                               0.0 0.140
                                                                          6.5
                                                                                -99"
    90
        -99 0.308 0.456 0.468 0.223 -99 1.35 1.10 50.0 45.0
                                                               0.0 0.110
                                                                          6.5
                                                                                -99"
   120
       -99 0.207 0.341 0.452 0.122 -99 1.40 0.65 50.0 45.0
                                                               0.0 0.060
                                                                          6.5
                                                                                -99"
   150
       -99 0.243 0.365 0.455 0.067 -99 1.40 0.30 50.0 45.0
                                                               0.0 0.030
                                                                          6.5
                                                                                -99",
   180 -99 0.259 0.361 0.457 0.037 -99 1.40 0.10 50.0 45.0
                                                                0.0 0.010
                                                                          6.5
                                                                                -99",
   210 -99 0.259 0.361 0.457 0.020 -99 1.40 0.01 50.0 45.0
                                                                0.0 0.000
                                                                                -99")
```

 ${\tt read_soil_profile(sample_sol)}$

read_sol

Reads soil parameters from a single DSSAT soil parameter file (*.SOL)

Description

Reads soil parameters from a single DSSAT soil parameter file (*.SOL)

Usage

```
read_sol(
   file_name,
   id_soil = NULL,
   left_justified = NULL,
   col_types = NULL,
   col_names = NULL
)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
id_soil	a length-one character vector containing the soil ID code for a single soil profile
<pre>left_justified</pre>	A character vector of column names that should be left justified
col_types	One of NULL, a cols() specification, or a string. See $\mbox{read_fwf}$ or vignette("readr") for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line

read_tier

Value

a tibble containing the data from the raw DSSAT file

Examples

```
# Extract file path for sample soil file
sample_sol <- system.file('extdata','SAMPLE.SOL',package='DSSAT')
sol <- read_sol(sample_sol)</pre>
```

read_tier

Reads and combines data and header information from a single tier of a DSSAT output file

Description

Reads and combines data and header information from a single tier of a DSSAT output file

Usage

```
read_tier(
  raw_lines,
  col_types = NULL,
  col_names = NULL,
  na_strings = NULL,
  left_justified = "EXCODE",
  guess_max = 1000,
  store_v_fmt = TRUE,
  read_only = NULL
)
```

Arguments

	ing headline, but excluding version stamp and other header information) from a DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See $\texttt{read_fwf}$ or $\texttt{vignette}(\texttt{"readr"})$ for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line
na_strings	a character vector of string to represent missing values
$left_justified$	A character vector of column names that should be left justified
guess_max	An integer indicating the maximum number of lines that should be used to guess the type of a column

read_wth 17

store_v_fmt	a logical value indicating whether or not to store the format for variables being read
read_only	NULL or a character vector of column names that should be read in; If non-NULL only the columns listed will be read in.

Value

a tibble containing the data from the raw DSSAT output

Examples

```
sample_data_tier <- c(</pre>
"*DSSAT Cropping System Model Ver. 4.6.0.030 -forage
                                                         MAR 27, 2014; 06:11:48",
"*RUN
                                            PRFRM046 UFGA0601
                : 0 KG N/HA
"MODEL
               : PRFRM046 - Tifton 85 bermud
               : UFGA0601 G0 NITROGEN RESPONSE OF TIFTON 85 BERMUDAGRASS REGROW",
"EXPERIMENT
"DATA PATH
" TREATMENT 1 : 0 KG N/HA
                                             PRFRM046
" !
                           Soil evaporation (mm/d) by soil depth (cm):",
                                                                               61-71",
"!
                                 5-15 15-23
                                                23-32
                                                        32-41
                                                                       51-61
                          0-5
                                                               41-51
"@YEAR DOY
            DAS
                  SRAA
                          ES1D
                                 ES2D
                                         ES3D
                                                 ES4D
                                                        ES5D
                                                                ES6D
                                                                        ES7D
                                                                                ES8D".
" 2006 001
                  7.40
                         0.508
                                0.175
                                        0.060
                                                0.101
                                                        0.083
                                                                       0.098
                                                                               0.035",
             1
                                                                0.110
" 2006 002
                                0.263 0.064 0.104
                                                                       0.101
              2
                 8.40
                         0.849
                                                        0.086
                                                                0.113
                                                                               0.036",
" 2006 003
                               0.549
              3 13.10
                        1.148
                                        0.091
                                                0.132
                                                        0.108
                                                                0.144
                                                                       0.128
                                                                               0.046")
read_tier(sample_data_tier)
```

read_wth

Reads weather input data from a single DSSAT weather file (*.WTH)

Description

Reads weather input data from a single DSSAT weather file (*.WTH)

Usage

```
read_wth(file_name, col_types = NULL, col_names = NULL)
```

Arguments

file_name	a character vector of length one that contains the name of a single DSSAT output file
col_types	One of NULL, a cols() specification, or a string. See read_fwf or vignette("readr") for more details.
col_names	A character vector of column names; primarily helpful for cases where there are no white spaces between column names within the header line

18 run_dssat

Value

a tibble containing the data from the raw DSSAT file

Examples

```
# Extract file path for sample weather file
sample_wth <- system.file('extdata','SAMPLE.WTH',package='DSSAT')
read_wth(sample_wth)</pre>
```

run_dssat

Writes data from a single DSSAT data tier

Description

Writes data from a single DSSAT data tier

Usage

```
run_dssat(run_mode = "B", file_name = NULL, suppress_output = FALSE, wd = NULL)
```

Arguments

run_mode

a length-one character vector that specifies the run mode that should be used for the DSSAT simulation. One of: A - Run all treatments. User specifies fileX on the command line and the model runs all treatments B - Batch mode. User defines fileX and treatment numbers in Batch file C - Command line mode. Use input from the command line. D - Debug mode. Model skips input module and reads temp file from the command line E - Sensitivity analysis. User defines fileX and treatment number in Batch file F - Farm model. Use Batch file to define experiment G - Gencalc. Use Command line to define experiment and treatment I - Interactive mode. Use model interface for exp. & trtno. L - Gene based model (Locus). Use Batch file to define experiment N - Seasonal analysis. Use Batch file to define experiment and treatments Q - Sequence analysis. Use Batch file to define experiment S - Spatial. Use Batch file to define experiment T - Gencalc. Use Batch file to define experiment

file_name

a length-one character vector that specifies the file name to be used for simulation. Usually the name of a batch file or file X.

suppress_output

a logical value indicating whether to suppress DSSAT-CSM output from being printed to the console

wd

an optional character string that specifies the working directory within which to run DSSAT-CSM. If left NULL, DSSAT-CSM will be run in the current working directory

write_cul 19

Value

Invisibly returns the console output from running DSSAT-CSM

Examples

```
## Not run:
    run_dssat()
## End(Not run)
```

write_cul

Reads parameters from a single DSSAT cultivar parameter file (*.CUL)

Description

Reads parameters from a single DSSAT cultivar parameter file (*.CUL)

Usage

```
write_cul(cul, file_name)
```

Arguments

cul a DSSAT_tbl containing the contents of a DSSAT cultivar parameter file file_name a character vector of length one that contains the name of a single DSSAT output

file

Value

a tibble containing the data from the raw DSSAT output

```
# Extract file path for sample cultivar file path
sample_cul_file <- system.file('extdata','SAMPLE.CUL',package='DSSAT')

# Read sample cultivar file
cul <- read_cul(sample_cul_file)

# Create example cultivar file path
sample_cul_file2 <- paste0(tempdir(),'/SAMPLE.CUL')

# Write out sample cultivar file
write_cul(cul,sample_cul_file2)</pre>
```

20 write_dssbatch

write_dssbatch

Constructs and writes a DSSAT simulation batch file

Description

Constructs and writes a DSSAT simulation batch file

Usage

```
write_dssbatch(x, trtno = 1, rp = 1, sq = 0, op = 0, co = 0, file_name = NULL)
```

Arguments

x a tibble/data frame or character vector; if a tibble, it should contain all required columns of a DSSAT batch file (FILEX, TRTNO, RP, SQ, OP, CO); if a character vector, it should contain FileX file names trtno, rp, sq, op, co a numeric vector

an optional character vector of the intended batch file name

Value

file_name

invisibly returns a character vector containing the content of a DSSAT batch file

write_eco 21

write_eco	Reads parameters from a single DSSAT ecotype parameter file
	(*.ECO)

Description

Reads parameters from a single DSSAT ecotype parameter file (*.ECO)

Usage

```
write_eco(eco, file_name)
```

Arguments

eco a DSSAT_tbl containing the contents of a DSSAT ecotype parameter file

file_name a character vector of length one that contains the name of a single DSSAT output file

Value

a tibble containing the data from the raw DSSAT output

Examples

```
# Extract file path for sample ecotype file path
sample_eco_file <- system.file('extdata','SAMPLE.ECO',package='DSSAT')
# Read sample ecotype file
eco <- read_eco(sample_eco_file)
# Create example ecotype file path
sample_eco_file2 <- paste0(tempdir(),'/SAMPLE.ECO')
# Write out sample ecotype file
write_eco(eco,sample_eco_file2)</pre>
```

write_filea

Writes data to a single DSSAT file A

Description

Writes data to a single DSSAT file A

```
write_filea(filea, file_name, drop_duplicate_rows = TRUE)
```

22 write_filet

Arguments

filea a tibble containing the data to write to a DSSAT file A

file_name a character vector of length one that contains the name of a single DSSAT file

into which 'filea' will be written

drop_duplicate_rows

a logical value indicating whether duplicate rows should be dropped from tier_data

Examples

```
# Extract FileA path for sample file
sample_filea <- system.file('extdata','SAMPLE.CRA',package='DSSAT')
filea <- read_filea(sample_filea)

# Create example FileA file path
sample_filea2 <- paste0(tempdir(),'/SAMPLE.CRA')

# Write out sample FileA
write_filea(filea,sample_filea2)</pre>
```

write_filet

Writes data to a single DSSAT file T

Description

Writes data to a single DSSAT file T

Usage

```
write_filet(filet, file_name, drop_duplicate_rows = TRUE)
```

Arguments

filet a tibble containing the data to write to a DSSAT file T

file_name a character vector of length one that contains the name of a single DSSAT file

into which 'filet' will be written

drop_duplicate_rows

a logical value indicating whether duplicate rows should be dropped from tier_data

```
# Extract FileT path for sample file
sample_filet <- system.file('extdata','SAMPLE.CRT',package='DSSAT')
filet <- read_filet(sample_filet)
# Create example FileT file path</pre>
```

write_filex 23

```
sample_filet2 <- paste0(tempdir(),'/SAMPLE.CRT')
# Write out sample FileA
write_filet(filet,sample_filet2)</pre>
```

write_filex

Writes data to a single DSSAT FileX

Description

Writes data to a single DSSAT FileX

Usage

```
write_filex(filex, file_name, drop_duplicate_rows = TRUE, force_std_fmt = TRUE)
```

Arguments

filex a list of tibbles containing the data to write to a DSSAT file X

file_name a character vector of length one that contains the name of a single DSSAT file

into which 'filet' will be written

drop_duplicate_rows

a logical value indicating whether duplicate rows should be dropped from tier_data

force_std_fmt a log

a logical value indicating whether to override the variable format stored within

the FileX object with standard DSSAT formatting

write_sol

Writes soil parameters to a single DSSAT soil parameter file (*.SOL)

Description

Writes soil parameters to a single DSSAT soil parameter file (*.SOL)

```
write_sol(sol, file_name, title = NULL, append = TRUE, force_std_fmt = TRUE)
```

24 write_tier

Arguments

sol a tibble of soil profiles that have been read in by read_sol()

file_name a character vector of length one that contains the name of a single DSSAT output

file

title a length-one character vector that contains the title of the soil file

append TRUE or FALSE indicating whether soil profile should be appended to file_name.

If FALSE, the soil profile will be written to a new file and will overwrite file_name

(if it exists).

force_std_fmt a logical value indicating whether to override the variable format stored within

the FileX object with standard DSSAT formatting

Value

Invisibly returns NULL

Examples

```
# Extract file path for sample soil file
sample_sol <- system.file('extdata','SAMPLE.SOL',package='DSSAT')
# Read sample soil file
sol <- read_sol(sample_sol)
# Create example soil file path
sample_sol2 <- paste0(tempdir(),'/SAMPLE.SOL')
# Write example soil file
write_sol(sol,sample_sol2)</pre>
```

write_tier

Writes data from a single DSSAT data tier

Description

Writes data from a single DSSAT data tier

```
write_tier(
   tier_data,
   pad_name = NULL,
   drop_duplicate_rows = FALSE,
   drop_na_rows = TRUE
)
```

write_wth 25

Arguments

```
tier_data a tibble containing the data to write out

pad_name a character vector of column names for which to add leading spaces/trailing periods

drop_duplicate_rows a logical value indicating whether duplicate rows should be dropped from tier_data

drop_na_rows a logical value indicating whether rows containing all NA values should be dropped from tier_data
```

Value

a character vector

Examples

```
tier_data <- data.frame(TRNO=1:4,HWAM=rnorm(4,2000,250))
tier_data <- add_v_fmt(tier_data,v_fmt=c(TRNO='%6.0f', HWAM='%6.0f'))
output <- write_tier(tier_data)</pre>
```

write_wth

Writes data to a single DSSAT weather file

Description

Writes data to a single DSSAT weather file

```
write_wth(
  wth,
  file_name,
  force_std_fmt = TRUE,
  location = NULL,
  comments = NULL,
  INSI = NULL,
  LAT = NULL,
  LONG = NULL,
  ELEV = NULL,
  TAV = NULL,
  AMP = NULL,
  REFHT = NULL,
 WNDHT = NULL,
  CO2 = NULL
)
```

26 write_wth

Arguments

wth a tibble containing the data to write to a DSSAT weather file

file_name a character vector of length one that contains the name of a single DSSAT file

into which 'wth' will be written

force_std_fmt a logical value indicating whether to override the variable format stored within

the 'wth' object with standard DSSAT formatting

location a character value that gives the location for the weather file header line

comments a character vector containing any comments to be included in the weather file

INSI Institute and site code (four-digit character code)

LAT Latitude in decimal degrees

LONG Longitude in decimal degrees

ELEV Elevation in meters

TAV Long-term average air temperature at reference height (typically 2 meters)

AMP Long-term monthly air temperature amplitude at reference height (typically 2

meters)

REFHT reference height for air temperature measurements
WNDHT reference height for wind speed measurements
CO2 carbon dioxide concentration in parts per million

Index

```
\mathsf{add\_v\_fmt}, \textcolor{red}{2}
as_DSSAT_tbl, 3
calc\_AMP, 4
calc_TAV, 4
clear_output, 5
mutate_cond, 5
read_cul, 6
read_dssat, 7
read_dssbatch, 8
read_eco, 8
read_filea, 9
read_filet, 10
read_filex, 11
read_filex_multiple, 12
read_fwf, 6, 7, 9–17
read_output, 12
read_pest, 13
read_soil_profile, 14
read_sol, 15
read_tier, 16
read_wth, 4, 17
run_dssat, 18
write_cul, 19
write_dssbatch, 20
write\_eco, 21
write_filea, 21
write\_filet, 22
write_filex, 23
write_sol, 23
write_tier, 24
write_wth, 25
```